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Medone et al. [1] used ecological niche modelling (ENM) analyses to assess the

climatic suitability expected by the year 2050 in Venezuela and Argentina for

two vectors of Chagas disease, the kissing bugs Rhodnius prolixus and Triatoma
infestans. Based on these analyses, and on epidemiological data, Medone et al.
[1] projected changes in the rate at which susceptible humans acquire Chagas

disease and in the incidence of the disease in both countries. Medone et al.
[1] concluded that by 2050 the climatic suitability for these vectors would

decrease in areas in which a high-to-moderate transmission risk is currently

observed. Herein, I argue that the nature of both the presence data and the

study regions used by Medone et al. [1] limit, and perhaps even invalidate,

the biological interpretations derived from their ENM analyses.

At the core of ENM is a process termed ‘model calibration’, mathematically

characterizing the environmental conditions suitable for a species. Model cali-

bration is achieved by means of contrasting the environmental conditions at

sites in which the focal species is known to be present (presence data) with

those at sites in which such species is absent (absence data) or at sites in which

such species has not been observed (pseudo-absence data). Regardless of

which of these data types are used, and of the algorithm chosen to model species’

niches, a fundamental requirement of ENM is the use of real presence data [2].

Low-quality presence data preclude reliable modelling of species’ niches

[3–5]. Two errors are widely recognized, namely incorrect taxonomic identifi-

cations leading to the use of presence data not belonging to the focal species

[3,5] and assignment of incorrect latitude or longitude during the georeferencing

process [4]. These errors flaw the model calibration process by assuming environ-

mental conditions not matching those of sites in which the focal species is or can

be present. Common steps to assure high-quality data for ENM analyses include:

(1) examine museum specimens to both confirm the taxonomic identification of

the focal species and obtain associated locality data [3,6], (2) georeference with

as many sources as necessary (e.g. maps, GIS software, gazetteers, field notes,

interviews with specimen collectors; [7]), (3) exclude data with high georeferen-

cing uncertainties [4]; and (4) account analytically for uncertainties generated

in the georeferencing process [8–10]. Medone et al. [1] did not carry out any

of these procedures. Instead, they digitized the expert-drawn range maps of

Carcavallo et al. [11]. Then, they randomly selected sites within these maps

to obtain a large number of data points for each species (R. prolixus, n ¼ 1240;

T. infestans, n ¼ 2350). Medone et al. [1] calibrated the models for each species

based on the resulting datasets as if they represented real presence data, even

though they recognized that ‘. . . not all these points are actual presence points

. . .’. The data so generated are not adequate for ENM analyses because an

unknown fraction of them does not represent real presence data.

The expert-drawn range maps [11] employed by Medone et al. [1] are not

reliable. Such maps were made on the basis of unspecified, subjective criteria
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(e.g. ‘. . . according to current experience and information. . .’

[11]). The literature cited as the source of information for

these maps is insufficient to allow accurate depiction of the

wide ecogeographic distribution of R. prolixus and T. infes-
tans. Moreover, some of the cited literature lack

geographical information of individual specimen localities

(e.g. [12,13]). The inclusion of small areas covered by sea-

water for some species (e.g. Alberprosenia malheiroi and R.
paramensis) suggests that the drawing technique used to

make these maps, including those of the focal species, was

rudimentary and error-prone. This kind of error cannot

easily be detected and corrected when the erroneously

included areas match smaller bodies of water or terrestrial

habitats unsuitable for the species. Even if the range maps

of Carcavallo et al. [11] were made according to adequate

standards, still the information extracted from them do not

represent real presence data. Although range maps can be

adequate for some general purposes (e.g. illustrating species

distributions in field guides), the scale and resolution to

which they are typically drawn preclude their use as source

of presence data for ENM analyses. That is, because range

maps reflect the extent of occurrence and not necessarily

the area of occupancy of species, they are prone to false posi-

tives, i.e. to include areas with unsuitable environmental

conditions for the focal species [14]. A search for false posi-

tives in the datasets of Medone et al. [1] by extracting

elevation values from a GIS file (3000 resolution; [15]) allows

flagging sites at elevations of 3000–3600 m for R. prolixus
and of 4300–4650 m for T. infestans that are at odds with

their own assertion that the elevation range of these species

is 0–2600 m and 0–4100 m, respectively. Another example

of possible false positives involve ‘data’ for R. prolixus for

sites in Panama and southern Costa Rica, which are within

areas where the species has not been found to occur [16].

Medone et al. [1] claimed to have considered ‘. . .the

possible prediction errors that may result [from their data-
gathering procedure], and how they compare with prediction

errors resulting from the use of confirmed presence

occurrences. . .’ First and foremost, no comparison of the pre-

diction errors caused by use of unconfirmed occurrences was

presented throughout the article or its electronic supple-

mentary material. By contrast, the percentage of confirmed

occurrences correctly predicted by the models of each

species were indeed reported (R. prolixus, 84.17%; T. infestans,

93.50%). Unfortunately, the p-values (at the selected

threshold) associated with these predictions were not

reported. Moreover, neither the geographical projection of

the models nor the percentage of the study region predicted

as suitable by each model was reported. Hence, the low omis-

sion rates obtained might have resulted simply from

extremely broad predictions caused by pervasive positional

errors in the ‘presence’ data.

The choice of study regions determines the performance

of ENM analyses [17–19]. The basic principle to appropri-

ately choose study regions is that they should not include

areas that cannot be accessed by the species owing to its

limited dispersal abilities or to the presence of barriers to

dispersal [17–19]. Operational strategies have been propo-

sed to minimize possible violations of this principle [7,18],

but it is unclear whether Medone et al. [1] implemented

them. More importantly, the geographical coordinates or

polygons that define their chosen regions were not reported,

making it impossible for other authors to both assess the

appropriateness of their study regions and replicate their

ENM analyses.

The use of inadequate presence data and unknown study

regions for model calibrations render the results obtained by

Medone et al. [1] unreliable for interpretations of biological

phenomena. Unless these issues are further and satisfactorily

clarified, their results could potentially misguide the design

of future research, health policies and epidemiological

programmes to control the vectors of Chagas disease.
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